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Electronic eigenfunctions are studied on the tight-binding model of disordered systems
at dimensionalities d=1,2,3. It is found that the eigenfunctions have a self-similar (frac-
tal) behavior up to length scales roughly equal to the localization length. For 4=3, above
the mobility edge, the fractal character persists up to length scales about equal to the
correlation length ¢, The dependence of the fractal dimensionality D on disorder W is
presented. The fractal character of the wave function is suggested as a new method for

finding mobilitv edees
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There has always been a problem of how to
characterize the quantum eigenfunctions of the
disordered systems. One characterization is
the localization length A, which describes the ex-
ponential decay of the localized states. Another
is the correlation length £ which describes the
spatial extent of the amplitude fluctuations of ex-
tended states. As a result of recent interest in
studying the fractal (self-similar) character of
clusters in percolating models," " it is important
to test whether the electronic eigenfunctions in
disordered systems are also fractal.

Before discussing our new results let us brief-
ly review the results from percolation theory,
which motivated this study. It is now well known
that for the classical percolation, it has been
demonstrated®’ *® that a percolation correlation
length £, exists, which diverges as &, ~[p -p,|""
at the critical concentration .. For lengths L
much larger than £, the system looks homogen-
eous. However, both Monte Carlo simulations?®'*
and experiments® show that the clusters are not
homogeneous for length scales L which are in the
range @ < L <{, (a is the interatomic distance).
In this range, the clusters are self-similar and
the number of links (or sites) which belong to a
given cluster within a volume L? (in d dimensions)
varies as L?, with the fractal dimensionality''?
D=d -f'/v. Here B’ and v are the density and
correlation-length exponents, respectively. Note
that this property is expected for both finite and
infinite clusters. For the classical percolation
case it has been shown experimentally® that D
=1.90£0.02 for d=2 independent of the concentra-
tion p of the conducting links.

In this Letter we systematically examine the
fractal character of the wave functions® in d=1,
2, and 3 dimensions for disordered systems.
The (racaf dimensionadicy & (s adcaed aad s
dependence on the disorder is examined.
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There is ample evidence from numerical
work®' 7 in one-dimensional (1D) and 2D disor-
dered systems and from analytical studies in 1D
systems?® that the localized eigenfunctions fluc-
tuate widely (in addition to their exponential de-
cay), having thus a fragmented character. Even
the extended states for 3D systems above the mo-
bility edge are expected to show strong amplitude
fluctuations up to a length £; for length scales
above £ the extended states look uniform. The
existence of the length £ is a consequence of the
scaling theory of localization.®”! The latter is
based upon the assumption that there is a single
scaling variable, the dimensionless conductance
£(L), which determines the localization proper-
ties of a physical system. It is further assumed
that the quantity 8=d Ing/d InL is a monotonic and
nonsingular function of g.

The fragmented character of the eigenfunctions
strongly suggests that they may be fractal objects.
Mandelbrot'® has pointed out that the fractal di-
mensionality of such an object embedded in d-
dimensional space can be determined from the
relation [ ,“d»r* 'p(¥)~ LP, where p(T) is the
density. Unfortunately this relation is not appli-
cable to a strongly random system because of the
strong dependence of the integral on the origin.
One way to avoid this difficulty is by averaging
over all possible choices of origin, each weighted
by the density (or probability) itself:

A(L)= [ar 0 [, drr=ipFeF)=c LP, (1)

where c is a constant. Our numerical study re-
ported below showed that Eq. (1) is well satisfied
(fora< L=< £, X, where X is the localization
length). Thus we were in a position to determine
for the first time the fractal dimensionality of the
eigenfunctions in a disordered quantum system.
Thcs adlowed «s (3 cheack ¢de recend suggesdiion

by Cohen, Economou, and Soukoulis'® that D=2
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+8, for B>0.
We consider a tight-binding model defined by
the Hamiltonian

H=3€,[n)(n|+ 35 V,.|n)(m]|, (2)

where €, are random variables given from a rec-
tangular probability distribution of width W, In
the present study the system has no off-diagonal
disorder, i.e., V,,. is nonzero and equal to V
(which is taken as the unit of energy) only when

n and m are nearest neighbors.

We have numerically calculated the wave func-
tions for N=5000 sites in 1D, N=50X50 sites in
2D, and N=16X%16X16 sites in 3D. We also im-
pose periodic boundary conditions. We have cal-
culated several (five in this work) eigenfunctions
corresponding to eigenvalues close to any given
energy E, A calculated eigenfunction defined as
H}=EY is expressed as ¥=7,,c,|i) for each
eigenvalue E. We normalize the eigenfunctions
so that 7 ,|lc,;|2=1; then p(r;)=p, =lc,|? and the
fractal dimensionality is determined!” by the dis-
cretized version of Eq. (1).

Note that for a uniform normalized wave func-
tion p (F) = const and [d’r p(F)=1; therefore A(L)
=L?. Our results for the three different dimen-
sions are as follows:

1D case.—1t is by now well established that in
a 1D model all eigenstates are localized regard-
less of the amount of disorder. There exists a
length scale, the localization length A, above
which one sees the exponential decay of the wave
function. For lengths up to localization length A
the wave function has a fractal character as one
can see from Fig. 1(a) where we plot InA(L) vs
InL for different amounts of disorder for E=0.
As expected IndA(L) vs InL follows a straight line
rather well and then bends over. The point of
bending is expected to be correlated with the lo-
calization length. However, because there are
substantial fluctuations in the behavior of eigen-
functions belonging to the same energy and the
same disorder W, the point of bending fluctuates
appreciably from eigenfunction to eigenfunction
and hence it may be significantly different from
the localization length which is denoted by an ar-
row in our figures. Note that for low disorder
the fractal dimensionality is close to 1 and de-
creases as disorder increases. For a given dis-
order we have generated five different eigenstates
and for each of them we plot InA(L) vs InL. By
least-squares fitting we get the slope which is the
‘ractal dimensionality D. Then we average D
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FIG. 1. (a) Plot of InA(L) vs In L for different
amounts of disorder W at the center of the band E =0
for a 1D disordered system. The arrows denote the
value of the localization length. The solid line has
slope 1, the value for extended states. (b) Fractal
dimensionality D of the eigenstates vs disorder W for
1D disordered system at the center of the band, Error
bars come from averaging D over five random con-
figurations,

over the five eigenfunctions. This procedure
has been done by the computer to eliminate any
bias errors by us. In Fig. 1(b) we plot the aver-
age value of D as a function of disorder for E=0.
Note that D decreases as disorder increases. At
the same time A decreases, and therefore the
length scale over which the fractal character of
the wave function is obeyed decreases.

2D case.—Our results for the 2D case are sim-
ilar to those of the 1D case. For length scales L
= A the wave function is self-similar down to al-
most interatomic distances. This is clearly seen
in Fig. 2(a) where we plot InA(L) vs In(2L +1) for
different disorders W for E =0.45. As in the 1D
case we have calculated the fractal dimensional-
ity D for five eigenstates with eigenvalues'®
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FIG. 2. (a) Plot of InA(L) vs In(2L + 1) for different
amounts of disorder W at E =0.45 for a 2D disordered
system, The arrows denote the value of the localization
length. The solid line has slope 2, the value for exten-
ded states. (b) Fractal dimensionality D of the eigen-
states vs disorder W for a 2D disordered system at
E =0,45. Error bars come from averaging D over
five random configurations.

around E =0.45 and plot it as a function of disor-
der. Note that as disorder increases, D decreas-
es. Of course as W increases, A decreases and
therefore the self-similar region diminishes,

3D case.—The 3D case is the most interesting
one because a mobility edge exists. At the mobil-
ity edge there is no upper length scale (both A
and £ blow.up there) and the fractal character
continues at all lengths. On the other hand, the
size of the system that we can treat numerically,
although no less than in previous numerical stud-
ies, is still not big enough to allow definite con-
clusions.

The expected behavior is as follows: For dis-

order not enough to produce localization and for
length scales larger than a but less than £, 1nA
vs In(2L +1) must have a slope D< 3. Well above
¢ the slope must increase to 3. At the mobility
edge the slope D must be a constant less than 3
at all length scales. Finally for strong disorder,
when states are localized, a constant slope D <3
will be maintained up to a distance roughly equal
to the localization length A; well above A, 1nA
vs In(2L +1) is expected to bend over and show a
saturation behavior.

Such a behavior was found for the E =0 states
of a 3D system. We studied several values of W,
For each value of disorder we calculated five dif
ferent eigenfunctions each of eigenenergy very
close to zero. Because of the relatively small
size of our sample, the plot of InA vs In(2L +1)
did not in general follow a straight line as well
as was found for d=1 and 2. The slope as deter-
mined from a least-squares fit fluctuated signif-
icantly from eigenfunction to eigenfunction, As
a result there is a rather large uncertainty in
our values of D, We find D=1,9+0,3, 1,7+0.3,
and 1.3+0.3 for W=14, 16, and 20, respectively.
To estimate fractal dimensionality D, at the
mobility edge we must know the critical value,
W,, of W. It was recently estimated'® that W,
~16. Our present preliminary results suggest
that W, ~17x2, Thus our estimate for D, is D,
=1,7+£0.,3, This value seems to be in clear dis-
agreement with the first-term-in-¢ (where e=d
- 2) result for D, obtained by Wegner® (D, =2 -¢),
while it is reasonably close to the value D =2
suggested by Cohen, Economou, and Soukoulis. !

It is worthwhile to point out that a by-product
of the present study is a new method for obtain-
ing the critical disorder W, (E) for localization,
The plot of 1nA(L) vs In(2L +1) bends upwards
for W<W_, is a straight line for all lengths at
W=W,., and bends downwards for W> W_. The
method determines W, to be within the limits W,
<W, <W,, where §(W,) =L ., and A(W,) L .,;

L rax is the maximum size of the random system
for which one can numerically obtain the eigen-
states. An alternative may be to obtain W, by
numerically solving the equation D(W,)=D,,
where D, is the fractal dimensionality at the
mobility edge. Of course, an improved estimate
of D, is needed.

In conclusion, we have numerically demon-
strated for the first time that for a < L<min({, 2)
the eigenfunctions in disordered systems have a
fractal character. Thus the amplitude of the
eigenfunctions is characterized quantitatively not
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only by a length scale £ or A but by a fractal
dimensionality D as well. We have also obtained
explicit numerical results for the dependence of
D on the disorder.
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out to us Eq. (1) as a definition of the fractal
dimensionality; we thank also M. H, Cohen and
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